• 锂电池负极浆料研磨分散设备

    详细信息

     品牌:IKN  类型:剪切分散机  物料类型:固-液  
     适用物料:化学品  应用领域:化工  型号:ERS2000  
     速度类别:单速  调速范围:15000 r/min 分散轮直径:115 mm 
     升降行程:1000 mm 电机功率:22 Kw 变速方式:变频变速  
     罐容量:300 L 外形尺寸:1-1-2 mm 整机重量:400 kg 
     材质:316    
    锂电池负极浆料研磨分散设备,锂电池正极浆料研磨分散设备,锂电池浆料研磨分散设备是定、转子狭窄的间隙中受到强烈的机械及液力剪切、离心挤压、液层摩擦、撞击撕裂和湍流等综合作用,形成悬浮液。高剪切均质机从而使不相溶的固相、液相、气相在相应熟工艺和适量添加剂的共同作用下,瞬间均匀精细的分散均质,经过高频管线式高剪切分散机的循环往复,***终得到稳定的高品质产品。

    锂电池负极浆料  负极材料
    高容量电池的基石。炭材料是负极市场主流,而天然石墨因成本优势逐步侵蚀其它负极材料。人造石墨和中间相炭微球在动力电池领域更具竞争力,合金负极材料是高储能锂电池的首选。对具体负极材料供应商来看:天然石墨方面是日本炭素和中国宝安旗下的深圳贝特瑞;人造石墨类日立化成的 MAGD 系列产品占据主导地位,其次是上海杉杉的FSN 和3H 系列;中间相炭微球依次为JFE Chemical 和上海杉杉。

    锂电池负极浆料研磨分散设备锂离子电池浆料是由多种不同比重、不同粒度的原料组成,又是固-液相混合分散,形成的浆料属于非牛顿流体。锂离子电池浆料是一种像油状的流动的液体,所以具有一般流体所具有的特征如粘性、流动性等,同时因为电池浆料是一种液固两相流,所以还具有一些自身特殊的性能。
    2.1.1 锂离子电池浆料流变性
    流变性是指物质在外力作用下的变形和流动性质。由于液体不能承受剪切力,因而不能保持其外形的稳定。在外力的作用下,液体就会发生流动和变形等的性质,称为流变性。
    浆体的流变性十分复杂.一种浆体在低浓度时可能表现为牛顿流体或假塑性流体;浓度稍高产生絮团后,可能表现为宾汉流体;更高的浓度下又可能会出现胀塑性流体。对同—种浆料,在剪切率不太高时,不出现胀流现象,剪切率高时又可能转化为胀塑性流体。有些非牛顿流体在低剪切速率和高剪切速率下都可能呈现牛顿流体形象,这可能是因为在低剪切速率下,分子的无规则热运动占优势,体现不出剪切速率对其中物料重新排列使表观粘度的变化,当剪切速率增高到一定限度后,剪切定向达到了***佳程度,因而也使表观粘度不随剪切速率而变。如前所述,许多非牛顿体其流变特性受到体系中结构变化的影响。
    影响锂离子电池浆料流变性的一些主要参数:
    (1) 分散相或固相的类型及表面电荷的大小。对于不同种类的正负极活性物质,如正极常用的钴酸锂、锰酸锂,负极常用的石墨粉、中间相炭微球,由于其种类不同,因而具有不同的水化膨胀特性以及不同的表面电荷,这样,不同种类的活性物质其分散特性、胶溶特性以及形成具有一定强度的结构体系的能力也各不相同,其宏观表现是不同种类的活性物质配制而成的浆料具有不同的流变特性。
    (2) 固相的浓度。分散相或固相浓度的大小主要影响浆料的屈服应力和塑性粘度或表观粘度。在一般槽况下,固相浓度越大,其屈服应力、塑性粘度或表观粘度越大。
    (3) 固相颗位的大小、形状以及粒径的分布。在固相浓度不变的条件下,颗粒的粒径越小,由于其总的表面积增加,因而浆料的屈服应力和粘度将随之增加。
    (4) 分散介质本身的粘度。不同的溶剂具有不同的粘度,使得浆料的粘度也将随之变化。
    (5) 温度和压力。在不同的温度和压力下浆料具有不同的流变特性。
    (6) 浆料的 PH 值。
    2.1.2 锂离子电池浆料触变性
    触变性是指流体在剪切力作用下的一种结构破坏与恢复原有结构的效应。
    描述锂离子电池浆料的触变性主要包括触变的***后效果和触变过程,触变过程是指在一定的条件下锂离子电池浆料中的胶链结构随时间的破坏和恢复过程,它反映了触变性的时间效应。触变的***后效果是指在一定实验条件下达到稳定时的***大触变量。这里所说的达到稳定是指浆料内的结构破坏与恢复的一种动态平衡,而其宏观表现则为锂离子电池浆料剪切应力的固定不变,亦即剪切应力具有不随时间而变化的稳定数值。
    2.1.3 分散效果对锂离子电池浆料的影响
    混合分散工艺在锂离子电池的整个生产工艺中对产品的品质影响度大于 30%,是整个生产工艺中***重要的环节。锂离子电池的电极制造,正极浆料由粘合剂、导电剂、正极材料等组成;负极浆料则由粘合剂、石墨碳粉等组成。正、负极浆料的制备都包括了液体与液体、液体与固体物料之间的相互混合、溶解、分散等一系列工艺过程,而且在这个过程中都伴随着温度、粘度、环境等变化。在正、负极浆料中,颗粒状活性物质的分散性和均匀性直接响到锂离子在电池两极间的运动,因此在锂离子电池生产中各极片材料的浆料的混合分散至关重要,浆料分散质量的好坏,直接影响到后续锂离子电池生产的质量及其产品的性能。
    合分散工艺在锂离子电池的整个生产工艺中对产品的品质影响度大于 30%,是整个生产工艺中***重要的环节。锂离子电池的电极制造,正极浆料由粘合剂、导电剂、正极材料等组成;负极浆料则由粘合剂、石墨碳粉等组成。正、负极浆料的制备都包括了液体与液体、液体与固体物料之间的相互混合、溶解、分散等一系列工艺过程,而且在这个过程中都伴随着温度、粘度、环境等变化。在正、负极浆料中,颗粒状活性物质的分散性和均匀性直接响到锂离子在电池两极间的运动,因此在锂离子电池生产中各极片材料的浆料的混合分散至关重要,浆料分散质量的好坏,直接影响到后续锂离子电池生产的质量及其产品的性能。
    目前传统的锂离子电池浆料的制备都是在双行星分散设备中完成的。尽管目前在小型电池生产技术上已日趋成熟,但目前锂离子电池的生产过程中,电池的一致性控制仍然是锂离子电池制作的技术难点,尤其是对于大容量、大功率的动力型锂离子电池。另外,随着锂离子电池材料的不断进步,原材料颗粒粒径越来越小,这不仅提高了锂离子电池性能,也非常容易形成二级团聚体,从而增加了混合分散工艺的难度。
    (1) 原料的物理性能
    a. 石墨:非极性物质,易被非极性物质污染,易在非极性物质中分散;不易吸水,也不易在水中分散。被污染的石墨,在水中分散后,容易重新团聚。一般粒径 D5020μm左右。颗粒形状多样且多不规则,主要有球形、片状、纤维状等。
    b. 水性粘合剂(SBR):小分子线性链状乳液,极易溶于水和极性溶剂。
    c. 防沉淀剂(CMC):高分子化合物,易溶于水和极性溶剂。
    d. 异丙醇:弱极性物质,加入后可减小粘合剂溶液的极性,提高石墨和粘合剂溶液的相容性;具有强烈的消泡作用;易催化粘合剂网状交链,提高粘结强度。乙醇:弱极性物质,加入后可减小粘合剂溶液的极性,提高石墨和粘合剂溶液的相容性;具有强烈的消泡作用;易催化粘合剂线性交链,提高粘结强度。
    e. 去离子水(或蒸馏水):稀释剂,酌量添加,改变浆料的流动性。
    (2) 原料的预处理
    a. 石墨:经过混合,使原料均匀化,提高一致性,然后在 300~400℃常压烘烤,除去表面油性物质,提高与水性粘合剂的相容能力,修圆石墨表面棱角(有些材料为保持表面特性,不允许烘烤,否则效能降低)。
    b. 水性粘合剂:适当稀释,提高分散能力。
    (3) 掺和、浸湿和分散:
    a. 石墨与粘合剂溶液极性不同,不易分散。
    b. 可先用醇水溶液将石墨初步润湿,再与粘合剂溶液混合。
    c. 应适当降低搅拌浓度,提高分散性。
    d. 分散过程为减少极性物与非极性物距离,提高势能或表面能,所以为吸热反应,搅拌时总体温度有所下降。如条件允许应该适当升高搅拌温度,使吸热变得容易,同时提高流动性,降低分散难度。
    e. 搅拌过程如加入真空脱气过程,排除气体,促进固-液吸附,效果更佳。
    (4) 稀释
    加入溶剂将浆料调整为合适的浓度,便于涂布。
    2.3.3传统分散工艺面临的问题
      (1根据传统工艺中的叶轮剪切/循环特性,可以把叶轮的作用分为两大类,*类是对叶轮附近产生的剪切作用;第二类则是通过叶轮泵出的流量产生循环作用。浆体的进一步分散作用主要依靠叶轮的剪切作用,而叶轮的流量决定了叶轮的分散的能力。而在离叶轮端部较远的区域,总会存在一层浆料始终停滞不动,这个区域也就是人们常说的死区,分散设备的工作区域越大,而且浆料黏度越高,死区的问题就越突出,就算采用不同的叶轮和结构,死区仍然难以避免,因此在锂离子电池浆料的制备过程中,所制得的浆料产品就会出现混合分散不均匀、粉体颗粒与粘合剂接触不均匀、易分层和发生硬性沉淀等一系列问题
     2)在操作过程中双行星搅拌也会遇到诸多问题:
    1.批次分散工艺,混合分散时间长,能量消耗大。
    2 电极粉末材料由行星搅拌器顶部加入,粉尘容易飞扬、漂浮。更重要的是粉末与液相混合极易发生团聚
    3. 物料易残留于行星搅拌器的罐盖、罐壁及搅拌桨上,清洗操作困难。
    4. 空气易存留于分散混合罐,气泡的产生影响分散效果。
    5. 批次工艺致使量产受到限制,生产线占地面的大,维护成本高。

    锂电池负极浆料研磨分散设备影响分散乳化结果的因素有以下几点
     
     
    1 分散头的形式(批次式和连续式)(连续式比批次好)
    2 分散头的剪切速率 (越大,效果越好)
    3 分散头的齿形结构(分为初齿,中齿,细齿,超细齿,约细齿效果越好)
    4 物料在分散墙体的停留时间,乳化分散时间(可以看作同等的电机,流量越小,效果越好)
    5 循环次数(越多,效果越好,到设备的期限,就不能再好)
     
    线速度的计算
    剪切速率的定义是两表面之间液体层的相对速率。
    – 剪切速率 (s-1) = v 速率 (m/s)
    g 定-转子 间距 (m)
    由上可知,剪切速率取决于以下因素:
    – 转子的线速率
    – 在这种请况下两表面间的距离为转子-定子 间距。
    IKN 定-转子的间距范围为 0.2 ~ 0.4 mm
     
    速率V= 3.14 X D(转子直径)X 转速 RPM / 60
     
        高的转速和剪切率对于获得超细微悬浮液是***重要的。根据一些行业特殊要求,依肯公司在ERS2000系列的基础上又开发出ERX2000超高速剪切乳化机机。其剪切速率可以超过200.00 rpm,转子的速度可以达到66m/s。在该速度范围内,由剪切力所造成的湍流结合专门研制的电机可以使粒径范围小到纳米级。剪切力更强,乳液的粒经分布更窄。由于能量密度极高,无需其他辅助分散设备,可以达到普通的高压均质机的400BAR压力下的颗粒大小.
     
    2、设备特点

    •  ERS设备与传统设备相比:
    高效、节能
    传统设备需8小时的分散加工过程,ERS设备1小时左右完成,超细分散效果显著,能耗*降低;
    高速、高品质
    传统设备的搅拌转速每分钟几十转,带分散功能的转速每分钟1500转以内,只完成宏观分散加工,超细分散能力极为有限;ERS设备的转速每分钟1000015000转之间,超高线速度产生的剪切力,瞬间超细分散浆料中的粉体。

    • ERS设备与同类设备相比:
    多层多向剪切分散
    同类设备的定转子等部件结构单一,多级多层的结构是单纯重复性加工,相同的齿槽结构易发生物料未经分散便通过工作腔的短路现象;
    ERS设备的定转子结构采用多层多向剪切概念,装配式结构使物料得到不同方向剪切分散,杜绝了短路现象,超细分散更为彻底。
     
    3、工艺应用
     
    锂电池正负极浆料的超细分散   电路板基材浆料粉液超细分散
    高粘度物料粉液超细混合分散    纳米材料团聚物超细解聚分散



    锂电池负极浆料研磨分散设备


  • 留言

    *详细需求:
    *手  机:
    联 系 人:
    电    话:
    E-mail:
    公  司:
    谷瀑服务条款》《隐私政策
上海依肯机械设备有限公司 电话:18018542795 手机:18018542795 地址: 上海市松江区九新公路865号B幢101
内容声明:谷瀑为第三方平台及互联网信息服务提供者,谷瀑(含网站、客户端等)所展示的商品/服务的标题、价格、详情等信息内容系由店铺经营者发布,其真实性、准确性和合法性均由店铺经营者负责。谷瀑提醒您购买商品/服务前注意谨慎核实,如您对商品/服务的标题、价格、详情等任何信息有任何疑问的,请在购买前通过谷瀑与店铺经营者沟通确认;谷瀑上存在海量店铺,如您发现店铺内有任何违法/侵权信息,请在谷瀑首页底栏投诉通道进行投诉。